

Pergamon

0040-4039(94)01779-4

Endoperoxide Pathway in Prostaglandin Biosynthesis in the Soft Coral Gersemia fruticosa

Külliki Varvas, Reet Koljak, Ivar Järving, Tónis Pehk[#] and Nigulas Samel^{*}

Institute of Chemistry, Estonian Academy of Sciences, Akadeemia tee 15, EE0026 Tallinn, Estonia #Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences, Ravala 10, EE0100 Tallinn, Estonia

Abstract: An acctone powder preparation of the White Sea soft coral Gersenua fruticosa converts exogenous arachidonic acid to a prostaglandin-endoperoxide, identified as PGG₂ by chemical and spectral studies. The latter serves as a key intermediate from which, evidently by nonenzymic transformations, all optically active coral prostaglandins are formed.

In spite of widespread occurrence of A-, E- and F-type prostaglandins (PGs) in certain corals, e.g. *Plexaura homomalla* and *Lobophyton depressum*, yet the mechanism of biosynthesis of these compounds in corals has remained unresolved¹. It has been suggested that the marine pathway must be totally different from the mammalian endoperoxide route and that an unstable allene oxide formed from arachidonic acid via a lipoxygenase pathway could be a key intermediate in the biosynthesis of prostaglandins². However, these hypotheses have not found an experimental confirmation, due mainly to the inability of the coral preparations used to form chiral prostaglandins *in vitro*.

In our earlier studies we discovered that the Arctic soft coral Gersemia fruticosa is able to synthesize optically active PGD₂, PGE₂, PGF_{2a} and 15-keto-PGF_{2a}, as well as 8R-H(P)ETE and 11R-H(P)ETE from tritiated arachidonic acid *in vitro*³. The product pattern as well as the fact that in the presence of SnCl₂ as a mild reducing agent only PGF_{2a} was formed, encouraged us to assume that the transformation of arachidonic acid into prostaglandins in G. fruticosa occurs via a common prostaglandin-endoperoxide intermediate. This report describes the isolation of this unstable intermediate from short incubations of G. fruticosa, and the identification of the compound as PGG₂.

G. fruticosa was collected⁴ in the Gulf of Kandalaksha, White Sea, thereafter immediately frozen in liquid nitrogen, transported in dry ice and stored below -60° C to preserve the enzymic activity. Short

incubations of the coral acetone powder with tritiated arachidonic $acid^5$ did not lead to appreciable yields of PGH₂. The main labeled peroxy-compound, less polar than PGH₂, co-chromatographed on TLC with a mammalian PGG₂ standard⁶. No significant enhancement in the production of PGH₂ was detected in the presence of various reducing cosubstrates or stimulators of prostaglandin hydroperoxidase as adrenalin (1mM), L-tryptophan (5mM), phenol (1mM), and hydroquinone (0.7mM). On the contrary, in the presence of L-tryptophan, the highest yield of PGG₂ was obtained. The addition of hemin (1 μ M) alone or together with the above-mentioned electron donors was also ineffective for the conversion of PGG₂ to PGH₂, indicating the lack of the hydroperoxidase activity in the coral preparation.

To obtain more material for the final identification of this intermediate, ten scaled-up incubations (1.3 g of acetone powder and 6 mg of unlabeled arachidonic acid each) were carried out under the conditions described in⁵. Normal phase HPLC⁷ of the combined extracts gave 4 mg of a pure compound.

The structure of the isolated compound was first established by chemical modifications⁸ and subsequent TLC analyses in comparison with authentic standards^{6,9}. Treatment of this compound with SnCl₂ gave PGF_{2a}, indicating the presence of the endoperoxy bridge between C-9 and C-11. The formation of 15-keto-PGF_{2a} as the major product after the dehydration with lead tetraacetate and subsequent reduction with triphenylphosphine gave a strong evidence for the existence of a hydroperoxy group at C-15.

The final confirmation of the structure of PGG₂ was obtained from ¹³C NMR study. A comparison of the ¹³C chemical shifts of PGG₂¹⁰ and PGH₂¹¹ gave the following values of the peroxidation effects: +14.1 ppm (C-15); -4.5 ppm (C-16); +4.7 ppm (C-13); -3.8 ppm (C-14). In all other positions the differences are insignificant. This is in good accordance with characteristic carbon chemical shift values for 15-hydroperoxy-5,8,11Z,13E-eicosatetraenoic acid (15-HPETE) as an allylic secondary hydroperoxide, and the corresponding hydroxy acid (15-HPETE)¹², where, in addition to a 13.9 ppm low field shift of carbinol carbon and 4.7 ppm high field shift on saturated methylene carbon (C-16), a strong change in the polarization of an allylic double bond is observed: α -carbon to CHO (C-14) is shifted to the high field by 4.1 ppm. Thus, the ¹³C NMR spectrum fully confirms the structure of PGG₂.

To answer the question of whether further conversion of PGG₂ to prostaglandin end-products (i.e. transformation of a 15-hydroperoxy- and 9,11-endoperoxy group to a hydroxy- or keto group) in the coral is enzymic or chemical, incubations of PGG₂ in pH 8.5 Tris-buffer in the presence of active and heatdenaturated coral preparations were carried out. The similar product patterns obtained in both the cases after a 10 min incubation give evidence of a nonenzymic character of conversions. The domination of PGF compounds (15-hydroperoxy-PGF_{2a}, 15-keto-PGF_{2a} and PGF_{2a}, about 20% of each) among the decomposition products instead of E- and D-prostaglandins, typical products of the isomerization of PG-endoperoxides in a buffer, is indicative of the presence of endogenous reducing substances which are capable of reducing the endoperoxides to PGF compounds in crude coral preparations¹³. Also, it seems likely that 15-keto-PGF_{2a} is generated nonenzymically from PGG₂ via 15-hydroperoxy-PGF_{2a} or 15-keto-PGG₂¹⁴. The former route is

favored by a finding that a significant amount of 15-hydroperoxy-PGF_{2a} accumulates during the decomposition of PGG₂ in the presence of either an active or boiled coral enzyme.

The results obtained in this investigation indicate that the prostaglandins in *G. fruticosa* are formed via a PG-endoperoxide pathway. Two interesting points should be mentioned regarding the microsomal enzyme catalyzing the transformation of arachidonic acid to PGG_2 : (i) the conversion was not markedly inhibited by indomethacin³, and (ii) the lack of the prostaglandin-hydroperoxidase activity. The differential inhibition of cyclooxygenase (COX) isozymes COX-1 and COX-2 has been reported recently¹⁵. Also, it is shown that the replacement of heme prosthetic group with manganese(III)protoporphyrin IX gives an enzyme with a very low peroxidase activity¹⁶. The purification and characterization of the coral enzyme will illuminate the question of whether a novel COX-isozyme is involved in the marine pathway or, alternatively, whether PGG_2 is formed in the coral by a lipoxygenase pathway. An interesting hypothesis that PGG_2 would be formed via 15-peroxy arachidonate was recently proposed by Corey¹⁷. Another intriguing question remains regarding the generality of this pathway in other corals including *P.homomalla*.

Acknowledgment

The contribution of the Kartesh White Sea Biological Station of the Institute of Zoology, Russian Academy of Sciences, to the collection and identification of *G. fruticosa* is gratefully acknowledged. We also thank Professor Ülo Lille and Professor Alan R. Brash for invaluable discussions. This work is partially supported by the Estonian Science Foundation Grant No. 964.

References and Notes

- For recent reviews see (a) Gerwick, W.H. Chem. Rev. 1993, 93, 1807. (b) Gerwick, W.H.; Bernart, M.W. Marine Biotechnology, 1; Plenum Press: New York, 1993; pp 101-152. (c) Gerwick, W.H.; Nagle, D.G.; Proteau, P.J. Topics in Current Chemistry, 167; Springer-Verlag: Berlin Heidelberg, 1993; pp 117-180.
- (a) Corey, E.J.; Ensley, H.E.; Hamberg, M.; Samuelsson, B. J. Chem. Soc. Chem. Commun. 1975, 277. (b) Corey, E.J.; d'Alarcao, M.; Matsuda, S.P.T.; Lansbury, P.T., Jr.; Yamada, Y. J. Am. Chem. Soc. 1987, 109, 289.
 (c) Corey, E.J.; Matsuda, S.P.T. Tetrahedron Lett. 1987, 28, 4247. (d) Corey, E.J.; Matsuda, S.P.T.; Nagata, R.; Cleaver, M.B. Ibid. 1988, 29, 2555. (e) Brash, A.R.; Baertschi, S.W.; Ingram, C.D.; Harris, T.M. Adv. Prostaglandin, Thromboxane, Leukotriene Res. 19; Raven Press: New York, 1989; pp 70-73. (f) Baertschi, S.W.; Brash, A.R.; Harris, T.M. J. Am. Chem. Soc. 1989, 111, 5003. (g) Brash, A.R. Ibid. 1989, 1891. (f) Brash, A.R.; Baertschi, S.W.; Harris, T.M. J. Biol. Chem. 1990, 265, 6705. (h) Song, W.-C.; Brash, A.R. Arch. Biochem. Biophys. 1991, 290, 427.
- 3. Varvas, K.; Järving, I.; Koljak, R.; Vahemets, A.; Pehk, T.; Muurisepp, A.-M.; Lille, U.; Samel, N. Tetrahedron Lett. 1993, 34, 3643.
- 4. Samples of G. fruticosa (Octocorallia, Alcyonacea, Nephtheidae) were collected by divers at a depth of 25-30 m and water temperature about +5°C in August 1993.
- 5. 0.5 g of the coral acetone powder, obtained from 50 g of G. fruitcosa using the method of Brash and co-workers (Brash, A.R.; Baertschi, S.W.; Ingram, C.D.; Harris, T.M. J. Biol. Chem. 1987, 262, 15829), was preincubated in 30 ml of 0.05 M Tris buffer (Ph 8.5) containing 5 Mm L-tryptophan at room temperature for 5 min. After the addition of 60 µM of tritiated arachidonic acid (0.3 mCi/mmol), the incubation mixture was stirred for 1 min, immediately acidified to pH 3 with citric acid and extracted twice by wortexing and subsequent centrifugation with 25 mL of cooled hexane-diethyl ether (1:4). The combined top layers were dried over anhydrous Na₂SO₄. After evaporation of solvents at 0°C the residue was dissolved in ethyl acetate-hexane and passed through a silica gel cartridge by gradient elution with 10, 15, 20 and 25 % of ethyl acetate in hexane. PGG₂ was eluted with a 20 % eluent.
- Authentic PGG₂ and PGH₂ standards were prepared using ram seminal vesicles microsomes according to Hecker et al. with the exception that p-hydroxy-mercurybenzoate was omitted. See: Hecker, M.; Hatzelmann, A.; Ullrich, V. Btochem. Pharmacol. 1987, 36, 851.
- Conditions for preparative HPLC: Zorbax Sil column (9,2×250 mm); mobile phase: freshly dried and distilled hexane/isopropanol/acetic acid (93:7:0.1); flow rate: 5.6 mL/min; room temperature; detection: 206 nm; retention time: 6 min.
- (a) Nugteren, D.H.; Hazelhof, E. Biochim. Biophys. Acta 1973, 326, 448. (b) Hamberg, M.; Svensson, J.; Wakabayashi, T.; Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 345.
- 9. Prostaglandin standards were a generous gift from Kevelt Co., Tallinn, Estonia.
- ¹³C NMR of PGG₂ (125,7 MHz, in acetone-d₆ at 4°C, Me₄Si) ∂ 178.03 (s, C-1), 134.40 (d, C-13), 131.24 (d, C-14), 130.41 (d, C-5), 129.04 (d, C-6), 86.16 (d, C-15), 82.35 (d, C-11), 80.00 (d, C-9), 51.48 (d, C-12), 48.62 (d, C-8), 42.68 (t, C-10), 33.29 (t, C-16), 32.95 (t, C-2), 32.14 (t, C-18), 27.68 (t, C-7), 26.89 (t, C-4), 25.39 (t, C-17), 25.25 (t, C-3), 22.95 (t, C-19), 14.00 (q, C-20).
- 11. (a) Porter, N.A.; Byers, J.D.; Holden, K.M.; Menzel, D.B. J. Am. Chem. Soc. 1979, 101, 4319. (b) Pehk, T.; Valimäe, T.; Samel, N.; Lopp, M.; Lille, Ü.; Lippmaa, E. Proc. Estonian Acad. Sci. Chemistry 1982, 31, 85.
- 12. 15(S)HPETE and 15(S)HETE were prepared from arachidonic acid by soybean lipoxygenase-catalyzed oxidation and subsequent reduction of hydroperoxide (Graff, G. Methods in Enzymology, 86; Academic Press: New York, 1982, pp 386-392).
- 13. For analogous reduction in plasma and further references, see: Morrow, J.D.; Harris, T.M.; Roberts, L.J. Anal. Biochem. 1990, 184, 1.
- 14. For hematin-catalyzed formation of 15-keto-PGG₂, see: Graff, G.; Dunham, E.W.; Krick, T.P.; Goldberg, N.D. Lipids 1979, 14, 334.
- 15. Meade, E.A.; Smith, W.L.; DeWitt, D.L. J. Biol. Chem. 1993, 268, 6610.
- (a) Ogino, N.; Ohki, S.; Yamamoto, S.; Hayaishi, O. J. Biol. Chem. 1978, 253, 5061. (b) For a recent review on prostaglandin endoperoxide synthase, see Smith, W.L.; Marnett, L.J. Biochim. Biophys. Acta 1991, 1083, 1.
- 17. Corey, E.J.; Wang, Z. Tetrahedron Lett. 1994, 35, 539.

(Received in UK 11 July 1994; revised 5 September 1994; accepted 9 September 1994)